Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 901: 166461, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37607630

RESUMO

Aerosol-bound water, a ubiquitous and abundant component of atmospheric aerosols, has an impact on regional climate, visibility, human health, the hydrological cycle, and atmospheric chemistry. Yet, the intricate relationship between aerosol liquid water (ALWC) and chemical composition and relative humidity (RH) was not well understood. The present study explores ALWC derived from the ISORROPIA II model using real-time, high-resolution data of non-refractory submicron chemical species and meteorological parameters (temperature and RH) collected over the Indian Ocean as part of the ICARB (Integrated Campaign for Aerosols, Gases, and Radiation Budget)-2018 experiment. Results show that ALWC values over the South Eastern Arabian Sea (SEAS) were found to be higher by 4-6 times than those observed over the Equatorial Indian Ocean (EIO) due to a large decrease in aerosol loading from SEAS to EIO. ALWC peaked in the early morning hours (4:00-7:00), with greater values during the nighttime and lower values during the daytime across SEAS, which is comparable with RH variation. While the ratio of organics-to-SO42- mass fraction linearly decreased with increasing mass-based growth factors (MGFs) over EIO, such a scenario was not observed over SEAS. The latitudinal gradient of mass fraction of ALWC had shown a decrease towards EIO, consistent with organic fraction. The extinction coefficient of the dry mass of submicron particles is noticeably increased by 40 % by ALWC over SEAS and EIO. Moreover, ALWC could enhance the aerosol negative forcing by an average of 66 % (64 %) over SEAS (EIO) at the top of the atmosphere during the cruise period. These inferences imply that ALWC is the key factor in assessing the role of aerosols on atmospheric radiative forcing. Overall, the present study highlights the serious need to consider the ALWC in climate forcing simulations, particularly in moist tropical environments where their effect can be significant.

2.
Sci Total Environ ; 900: 165644, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37495130

RESUMO

Water-soluble organic carbon (WSOC) has been identified as a key component in atmospheric aerosols due to its ability to act as cloud condensation nuclei (CCN) owing to their highly hygroscopic nature. This paper discusses about the spatio-temporal variability in WSOC mass concentration, sources (primary and secondary contributions), the role of long-range air-mass transport in modulating their abundance, at distinct sectors over South Asia. We found from our observations that, photochemical ageing of primary organic aerosols that are derived from biomass emissions, significantly contribute to the total WSOC budget over South Asia. The wide range of water-soluble compounds released by biomass burning can contribute directly to the WSOC fraction or undergo further atmospheric processing, such as oxidation or ageing, leading to the formation of additional WSOC. WSOC/OC (organic carbon) ratio and the correlation between the WSOC and secondary organic carbon (SOC) are used for assessing the contribution from secondary sources. The three different ratios are used to delineate different source processes; OC/EC (elemental carbon) for source identification, WSOC/OC for long-range atmospheric transport (ageing) and WSOC/SOC to understand the primary and secondary contribution of WSOC. The present investigation revealed that, the primary OC that have undergone significant chemical processing as a result of long-range transport have a substantial influence on WSOC formation over South Asia, especially in Indo Gangetic Plain outflow regions such as southern peninsular and adjacent marine regions. Overall, oxidation and ageing of primary organic aerosols emitted from biomass burning was found to serve as an important source of WSOC over South Asia.

3.
Sci Total Environ ; 874: 162365, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36822414

RESUMO

Aerosol liquid water (ALW) can serve as an aqueous-phase medium for numerous chemical reactions and consequently enhance the formation of secondary aerosols in a highly humid atmosphere. However, the aqueous-phase formation of secondary organic aerosols (SOAs) is not well understood in the Indian regions, particularly in tropical peninsular India. In this study, we collected total suspended particulate samples (n = 30) at a semiarid station (Ballari; 15.15°N, 76.93°E; 495 m asl) in tropical peninsular India during the winter of 2016. Homologous series of dicarboxylic acids (C2-C12), oxoacids (ωC2-ωC9), pyruvic acid (Pyr), and glyoxal (Gly) were determined by employing a water-extraction of aerosol and analyzed using capillary gas chromatography (GC). Results show that oxalic acid (C2) was the most abundant organic acid, followed by succinic (C4), malonic (C3), azelaic (C9), and glyoxylic (ωC2) or phthalic (Ph) acids. Total diacids-C accounted for 1.7-5.8 % of water-soluble organic carbon (WSOC) and 0.6-3.6 % of total carbon (TC). ALW, estimated from the ISORROPIA 2.1 model, showed a strong linear relationship with sulfate (SO42-), C2, C3, C4, ωC2, Pyr, and Gly. Based on molecular distribution, specific mass ratios (C2/C3, C2/C4, C2/Gly, and Ph/C9), linear relationships among the measured organic acids, ALW, organic (levoglucosan and oleic acid), and inorganic (SO42-) marker compounds, we emphasize that diacids and related organic compounds, especially C2, majorly form via aqueous-phase oxidation of precursor compounds including aromatic hydrocarbons (HCs) and unsaturated fatty acids (FAs) originated from biomass burning and combustion-related sources. The present study demonstrates that sulfate driven ALW largely enhances the formation of SOAs via the aqueous-phase reactions over tropical peninsular India during winter.

4.
Sci Total Environ ; 845: 157163, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35798104

RESUMO

Tropical coastal regions may provide a unique feature to study the photooxidation of various organic aerosols and their climatic effects because of high humid atmosphere and intense solar radiation. However, knowledge about organic molecular composition and its light absorption properties remains concealed, particularly over tropical Indian regions. The present study is an investigation on water-soluble dicarboxylic acids, ω-oxoacids, pyruvic acid, α-dicarbonyls, brown carbon (BrC), and other chemical species in PM1.1 collected at a coastal urban location (Kochi) on the west coast of tropical India under distinct air masses. Molecular distribution of dicarboxylic acids was characterized by the predominance of oxalic acid (C2) in all the air masses followed by adipic (C6) or terephthalic (tPh) and phthalic (Ph) acids. On average, total diacids-C accounted for 5.03 ± 1.01 % of TC. Total diacid concentration showed strong linear relationships with organic (OC), elemental carbon (EC), and non-sea-salt potassium (nss-K+). Except for the northwest (NW) air mass period, the concentration of C2 diacid and its ratios (C2/total diacids, C2/ωC2, C2/Gly) showed a strong linear relationship with nss-SO42-. By combining all these results together with Pearson correlation analysis, the present study demonstrates that organic aerosols over the study region were predominantly produced by aqueous-phase oxidation of precursor compounds derived from biomass burning and combustion-related emissions. The mass absorption coefficient of BrC (babs-BrC-365nm) was strongly correlated with nss-K+, implying that biomass burning emissions are major sources of BrC. The absorption angstrom exponent (AÅE) values of water (methanol) extracts ranged from 3.20 to 3.83 (3.05-4.55) during the entire sampling period, indicating the substantial contribution of BrC chromophores to light absorption over the region. On average, BrC absorbs 10.6 ± 6.4 % and 22.4 ± 5.75 % of solar radiation compared to BC in water and methanol extracts, respectively, suggesting that BrC is a significant aerosol climate forcing agent over the west coast of tropical India.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , Ácidos Dicarboxílicos , Monitoramento Ambiental/métodos , Metanol , Material Particulado/análise , Água/química
5.
Sci Total Environ ; 763: 142967, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33143921

RESUMO

Trace elements in atmospheric particulate matter play a significant role in air quality, health and biogeochemical cycles. The present study reports on geochemical characteristics of size-resolved trace elements in PM10 aerosols collected under different air masses over a coastal urban location in peninsular India. A contrast in elemental distribution was observed for the particle size above 7.0 µm and below 1.1 µm under the influence of northeasterly air masses as characterized by Al > Fe > Zn and Fe > Al > Zn, respectively. The concentrations of the crustal elements (Al, Fe, Ti, P, Ba, Co) were high and illustrated by a unimodal size distribution with a peak in coarse mode (>2.0 µm) during northwesterly air masses. On the other hand, combustion-derived metals (Cu, Zn, Cd, Sb, and Pb) were maximized under northeasterly air masses, characterized by unimodal size distribution with a peak in fine mode (<2.0 µm). The enrichment factor (EF) analysis reveals the contribution of anthropogenic emissions to Cd, Sb, Pb, Zn, Cu, Cr, Ni, As, and Sn metals, particularly to the high enrichment of trace metals in fine mode. These results suggest that crustal emissions are major sources of trace metals in coarse mode aerosols; whereas combustion derived anthropogenic emissions contribute to the fine mode aerosols. The positive matrix factorization (PMF) analysis revealed that crustal sources (52-90%) were most abundant for particles >7.0 µm, whereas combustion related emissions such as vehicular and traffic sources are predominant for particles <1.1 µm. The present study demonstrates that trace metals in coastal urban aerosols are affected by changes in emission sources/strengths and regional transport of air masses originated from the northeasterly and northwesterly parts of the tropical Indian subcontinent.

6.
Environ Sci Process Impacts ; 20(7): 1069-1080, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29953162

RESUMO

Oxalic acid (OxA) is an end product in the oxidation of many organic compounds, and therefore is ubiquitous in the atmosphere and is often the most abundant organic species in ambient aerosols. To better understand the hygroscopic properties of OxA under sub- and supersaturated conditions in the atmosphere, we investigated the hygroscopic growth and cloud condensation nuclei (CCN) activation ability of pure OxA and its salts using a hygroscopic tandem differential mobility analyzer (HTDMA) and cloud condensation nuclei counter (CCNC), respectively. OxA particles absorb water under >45% RH, suggesting that the initial phase state might be an amorphous solid. The measured hygroscopic growth factor (HGF) of OxA at 90% RH was 1.47. We found that the HGF of ammonium oxalate (NH4-Ox) was larger than that of OxA, whereas HGFs of sodium, calcium, and magnesium oxalates (Na-Ox, Ca-Ox, and Mg-Ox) were smaller than that of OxA particles. Potassium oxalate (K-Ox) behaved like a typical water-soluble inorganic salt, exhibiting deliquescence and efflorescence transitions at around 85% and 50% RH, respectively. Na-Ox exhibited strong activation capabilities among all the investigated salts, followed by NH4-Ox and K-Ox as inferred from the activation ratios (CCN/CN) against supersaturations (SS). On the other hand, Ca-Ox showed moderate activation ability and Mg-Ox showed poor CCN activation ability. We also observed significantly higher κCCN values compared to κHTDMA for pure OxA and its salts (NH4-Ox and Na-Ox), suggesting that the condensation of OxA into the aqueous phase occurs during water uptake. These findings improve the fundamental understanding of hygroscopic behaviors and phase states of oxalic acid and its salts under sub- and supersaturated conditions in the atmosphere and impacts of hygroscopicity on the direct and indirect effects of aerosol particles.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/química , Oxalatos/química , Ácido Oxálico/química , Poluentes Químicos da Água/química , Molhabilidade
7.
Sci Rep ; 7(1): 8518, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819124

RESUMO

To better understand the impact of East Asian pollutants on the molecular composition of marine organic aerosols, we conducted long-term (2001-2013) observations of water-soluble dicarboxylic acids and related compounds in total suspended particulate samples collected at Chichijima Island in the western North Pacific (WNP). Seasonal variations of all the diacids and related compounds showed maxima in winter and spring and minima in summer, except for azelaic acid (C9), which maximized in summer to autumn. The overall annual concentrations of the total diacids, ω-oxoacids and α-dicarbonyls showed an increase during 2001-2013. We found a significant (p < 0.05) decadal increase in the inter-annual trends of pyruvic and glyoxylic (p > 0.05) acids, and methylglyoxal (MeGly). In contrast, phthalic acid (p < 0.05) and glyoxal (Gly) showed a decrease in their trends. We also found a significant decrease in the trend of the Gly/MeGly mass ratios. These results demonstrate that the enhanced concentrations of diacids over the WNP are majorly attributed to the aqueous-phase photooxidation of biogenic volatile organic compounds from East Asia followed by long-range atmospheric transport. Further, positive matrix factorization analysis showed a biogenic photochemical contribution (42%) was the dominant source of oxalic acid in the WNP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...